表分片
对于任何分布式数据库来说,数据的分片都是必不可少的。本文将描述 GreptimeDB 中的表数据如何进行分片。
分区
从逻辑上说,在 GreptimeDB 中数据是使用分区进行分片的。我们借用了在 OLTP 数据库中常用的概念“分区”,因为 GreptimeDB 使用“表”来组织数据并使用 SQL 来查询它。
在 GreptimeDB 中,一张表可以通过多种方式横向分区,并且它使用与 MySQL 相同的分区类型(以及相应的语法)。目前,GreptimeDB 支持 “RANGE COLUMNS 分区”。
每个分区仅包含表中的一部分数据,并按某些列值范围进行分组。例如,我们可以使用这样的语法在 GreptimeDB 中对表进行分区:
CREATE TABLE (...)
PARTITION ON COLUMNS (<COLUMN LIST>) (
    <RULE LIST>
);
该语法主要包含两部分:
- PARTITION ON COLUMNS后跟随一个使用逗号分隔的列名列表,用于指定哪些列可能会被用于分区。这里指定的分区列表仅作为“白名单”使用,实际上可能只有其中的一部分列会被用于分区。
- RULE LIST是一个包含多个分区规则的列表,每个规则都是一个分区名称和一个分区条件的组合。此处的表达式可使用- =,- !=,- >,- >=,- <,- <=,- AND,- OR,列名和字面量。
下面是一个具体的例子:
CREATE TABLE my_table (
  a INT PRIMARY KEY,
  b STRING,
  ts TIMESTAMP TIME INDEX,
)
PARTITION ON COLUMNS (a) (
  a < 10,
  a >= 10 AND a < 20,
  a >= 20,
);
我们在上面创建的 my_table 有 3 个分区。分别是包含了 "a < 10" 的行;包含了 "10 <= a < 20" 的行;和 "a >= 20" 的所有行。
重要
- 所有分区的范围不能重叠。
- 用于分区的列必须是在 ON COLUMNS中指定。
Region
在创建分区后,表中的数据被逻辑上分割。你可能会问:"在 GreptimeDB 中,被逻辑上分区的数据是如何存储的?" 答案是保存在 Region 当中。
每个 Region 对应一个分区,并保存分区的数据。所有的 Region 分布在各个 Datanode 之中。我们的 Metasrv 会根据 Datanode
的状态在它们之间自动移动 Region。此外,Metasrv 还可以根据数据量或访问模式拆分或合并 Region。
分区和Region的关系参见下图:
                       ┌───────┐
                       │       │
                       │ Table │
                       │       │
                       └───┬───┘
                           │
        Range [Start, end) │ Horizontally Split Data
        ┌──────────────────┼──────────────────┐
        │                  │                  │
        │                  │                  │
  ┌─────▼─────┐      ┌─────▼─────┐      ┌─────▼─────┐
  │           │      │           │      │           │
  │ Partition │      │ Partition │      │ Partition │
  │           │      │           │      │           │
  │    P0     │      │    P1     │      │    Px     │
  └─────┬─────┘      └─────┬─────┘      └─────┬─────┘
        │                  │                  │
        │                  │                  │  
┌───────┼──────────────────┼───────┐          │  Partition 和 Region 是一一对应的
│       │                  │       │          │
│ ┌─────▼─────┐      ┌─────▼─────┐ │    ┌─────▼─────┐
│ │           │      │           │ │    │           │
│ │   Region  │      │   Region  │ │    │   Region  │
│ │           │      │           │ │    │           │
│ │     R0    │      │     R1    │ │    │     Ry    │
│ └───────────┘      └───────────┘ │    └───────────┘
│                                  │
└──────────────────────────────────┘
     可以放在同一个 Datanode 之中